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aLaboratoire de Mécanique des Solides, Ecole polytechnique, 91128 Palaiseau, Cedex, France
bSNCF, Direction de l’Innovation et de la Technologie, 45 rue de londres, 75379 Paris, Cedex 08, France

Accepted 26 August 2005

Available online 13 February 2006
Abstract

The discomfort generated by the noise emission of braking systems in trains has aroused recently many studies on the

mechanical modelling of brake noise in France. A theoretical and numerical discussion on the phenomenon of brake

squeal is given in this paper in relation with some experimental data. This study is based upon a flutter instability analysis

giving unstable modes of the brake system under the contact and Coulomb friction.

r 2006 Elsevier Ltd. All rights reserved.
1. Background

Brake squeal is a complex phenomenon which has been studied since the beginning of the 20th century. Lots
of work has been motivated particularly by the automotive industry [1–3]. From a theoretical point of view,
different types of model have been built in order to understand the generation of squeal [4] and to predict its
frequencies. However, the prediction of squeal frequencies in real applications remains challenging.

In the initial prediction models, only a few degrees of freedom were considered. They consisted in modelling
the brake elements as rigid bodies coupled by springs and dampers [5,6]. The main difficulty preventing these
models from giving good agreement with reality is the determination of the appropriate spring and damper
characteristics. Another class of model is based on the finite element method (FEM). This method is useful to
model the different parts of the mechanism in a realistic way.

The different models are also distinguished according to their friction law. In the literature, this ranges from
the classical Coulomb friction law with a constant friction coefficient to a velocity-dependent friction
coefficient or more complex friction laws.

In this work, the FEM is used to model disc brake squeal of a TGV train (Train à Grande Vitesse) in
order to compare the numerical result with experimental squeal frequencies. With this spatial discretization
method, the contact conditions are well modelled, so for the sake of simplicity, a local Coulomb friction
law is used with a constant friction coefficient. This kind of study has not previously been conducted on TGV
trains.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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2. Introduction

The brake squeal generated by TGV disc brakes is a source of discomfort for the passengers both inside and
outside the train. It is therefore important to develop a refined mechanical modelling of the phenomenon in
order to understand the mechanism of the squeal generation. The squeal phenomenon is due principally to a
self-excited vibration of the brake components, at high frequency (from 4 to 20 kHz), and high intensity (up to
130 dB). It occurs only at low speeds, thus principally when the train arrives at a station. A theoretical and
numerical discussion is given here and compared with experimental data in order to understand the principal
mechanisms of squeal generation. The TGV disc brake system is first described briefly. Some experimental
data are then given obtained at a station from sound pressure measurements taken by microphones close to
the discs. Vibration measurements are also presented taken on the brake components of a train at rest. A
numerical simulation by the FEM is undertaken and the steady sliding solution is computed. A stability
analysis is then performed in order to analyse the flutter instability of the steady sliding response of the pads
on the discs, under the assumption of Coulomb friction with a constant friction coefficient.
3. The brake system

The disc-brake system of a TGV train is mounted on a bogie as shown in Fig. 1. There are four discs on each
axle. Each disc brake is composed of two symmetric lining plates with cylindrical pads (Fig. 2) which press
against the disc. The compression force is about 19 kN at maximum. The discs are attached to the axle by
means of a bell which is a very thin structure clamped to the axle, see Fig. 3.
4. Experimental data

The experimental measurements at the station are used to obtain the spectrum of brake squeal. For this, a
microphone was mounted near a disc brake as shown in Fig. 4. The spectrum obtained is shown in Fig. 5. This
shows clearly the existence of seven frequencies which emerge from the background noise. They occur in the
frequency range 6–20 kHz.
Fig. 1. A TGV bogie showing a wheelset with four brake discs.
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Fig. 2. Brake linings.

Fig. 3. Sketch of brake disc mounting arrangement.
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An experimental modal analysis to determine the modal vibration has been also performed for a bogie at
rest. Fig. 6 shows the two frequency response functions superposed with the sound pressure spectrum which
shows clearly that some vibration frequencies of the disc coincide also with some measured noise frequencies.
The first frequency response function comes from excited bending modes (the transducer measures axial
accelerations) whereas the second one is related to in-plane modes.
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Fig. 4. View of microphone mounted between two brake discs.

Fig. 5. A typical brake squeal sound pressure spectrum.
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5. Mechanical model

The disc and the linings are assumed to be linearly elastic, isotropic and homogeneous solids undergoing
small deformation. The contact is unilateral with Coulomb friction and the friction coefficient is assumed
constant. A discretization by finite elements (Fig. 7) is adopted with common nodes in contact.

The first model considered was a clamped disc. Different studies have shown that the bell does not add
much stiffness to the disc which behaves like a free–free disc. From a numerical point of view it has been found
to be necessary to use quadratic elements for the disc and linings to approximate the bending modes correctly.
As a consequence, the model is composed of shell elements for the bell and quadratic volume elements for the
disc and linings. Table 1 gives a comparison between the natural frequencies of the bell/disc system obtained
numerically and the experimental ones.
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Fig. 6. Two frequency response functions of the brake disc superposed with the sound pressure spectrum from Fig. 5. Light grey: axial

acceleration; dark grey: in-plane acceleration; black: sound pressure.

Fig. 7. The finite element model of the brake disc and linings.

Table 1

Comparison of numerical and experimental natural frequencies

Modes with nodal

diameters

Finite element model

(frequencies Hz)

Experimental results

(frequencies Hz)

Relative difference (%)

2 563 520 8.3

3 1206 1200 0.5

4 2101 2120 �0.9

5 3176 3208 �1.0

6 4384 4424 �0.9

7 5697 5736 �0.7

8 7091 7128 �0.5

9 8554 8575 �0.2

10 10 074 10 080 �0.1

11 11 640 11 624 0.1

12 13 232 13 088 1.1

13 14 885 14 784 0.7

14 16 556 16 400 1.0

15 18 254 18 040 1.2
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6. The governing equations

The system is governed by the virtual work equation with unilateral and frictional contact conditions. If u
denotes the displacement of the bell/disc D, and uL the displacement of the pads/linings L, then:Z

D

rðuÞ : eðu�Þ dOþ
Z

D

r:c � u� dO ¼
Z
qOC

N:u�n þ T � u�t dO 8u� 2 Uad0

with Uad0 ¼ fu=u ¼ 0 on qOU g; u ¼ Ug on qOU ð1Þ

un ¼ u � n

ut ¼ u� un:n

(
and

N ¼ ðr � nÞ � n;

T ¼ r � n�N :n;

(

where r is the Cauchy stress tensor, e is the strain tensor, c is the acceleration vector, r is the density and Ug is
the given displacement vector.

The constitutive equations are:

rðuÞ ¼ E : eðuÞ in D

Np0

u � nþ uL � nLp0

N :½u � nþ uL � nL� ¼ 0

and
jTjp� f :N

T � w� f :Njwj ¼ 0
on qOC

(8><
>: ,

where E is the Hooke fourth-order tensor, n is the outward normal to the planar surface of the disc and nL is
the normal to the pads. On the contact surface qOC , n ¼ �n

L.
w is the sliding velocity, w ¼ vþ _u� _uL, and v is the velocity due to the rotation of the disc. The coefficient

of friction is f.
In a same way, uL must satisfy:Z

L

rLðuLÞ : eðu�Þ dOþ
Z

L

rL:cL � u� dO ¼
Z
qOL

F

Fg � u
� dOþ

Z
qOC

N:u�n þ TL � u�t dO

8u� 2 UL
ad0

with UL
ad0
¼ fu=u ¼ 0 on qOL

U g; u
L ¼ UL

g on qOL
U ,

rLðuLÞ ¼ EL : eðuLÞ in L,

Np0

u � nþ uL � nLp0

N:½u � nþ uL � nL� ¼ 0

8><
>: and

jTLjp� f :N

TL � wL � f :NjwLj ¼ 0
on qOC ;

(

with wL ¼ �w and Fg which is the given force on the linings (on qOL
F ).

Under the assumption of small speed of rotation, the approximation c ¼ u;tt holds, refer to Ref. [7] for a
more complete expression of c.
7. The steady sliding response

At the steady sliding equilibrium, w ¼ v and c ¼ 0. The displacement at equilibrium u must satisfy from
Eq. (1): Z

D

eðuÞ : E : eðu�Þ dO ¼
Z
qOC

N :u�n þ T � u�t dO 8u� 2 Uad0

with Uad0 ¼ fu=u ¼ 0 on qOU g; u ¼ Ud on qOU , ð2Þ
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with

Np0

u � nþ uL � nLp0

N :½u � nþ uL � nL� ¼ 0

and

8><
>: T ¼ f :N:

v

jvj
¼ f :N:t on qOC .

Similar equations are also satisfied by uL. The discretized equations are

K:U ¼ P; KL:UL ¼ PL,

respectively, for the disc and the linings.
With the notation U ¼ ½Y;UC�

T, where Y represents the degree of freedom associated with the nodes located
outside the contact zone, the force vector P is

P ¼
F

RC

" #
.

If ðRCÞI is the (3� 1) contact reaction vector at a node I, then the contact conditions for ðU;ULÞ and ðRC;R
L
CÞ

on this node I are:

NIp0

ðUCÞI :nI þ ðU
L
CÞI :n

L
I p0

NI :½ðUCÞI :nI þ ðU
L
CÞI :n

L
I � ¼ 0

8><
>: and ðRCÞI ¼ NI ðnI þ f :tI Þ.

These conditions must be verified for all contact nodes I.
A theoretical discussion can be found in Ref. [7] giving a description of the equilibrium under the form of a

linear complementary problem and sufficient conditions for the existence and uniqueness of the steady sliding
equilibrium. The computation algorithm to obtain the steady sliding equilibrium (Fig. 8) consists of successive
iterations on the contact zone in order to satisfy the contact conditions. Practically, convergence is obtained
quickly.

Fig. 9 shows the normal contact force Ne at equilibrium. It is clear from this figure, that for this given
coefficient of friction, f and for this given force on the linings, Fg, the contact zone at equilibrium here is simply
the largest possible contact zone (qOe

C ¼ qOC).
In the next part, ue is the equilibrium displacement and qOe

C the contact zone at equilibrium.
Fig. 8. The sliding equilibrium of the brake system.
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Fig. 9. The local normal contact force Ne (Newton) over qOC .
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8. The flutter instability of the steady sliding equilibrium

A small perturbed motion near the equilibrium is now considered. However, the governing equations are
not differentiable when there is separation, and thus only sliding motions are considered on the present
contact zone. Such a perturbed motion û can then be governed by linearized equations. From the expressions:

u ¼ ue þ û; û � nþ û
L
� nL ¼ 0 on qOe

C .

The contact conditions:

T ¼ f :N:
w

jwj

give, after linearization

T̂ ¼ f :N̂:
v

jvj
þ

f :Ne

jvj
ŵ�

v � ŵ

jvj2
v

� �
¼ f :N̂ :tþ

f :Ne

jvj
1� t� tð Þ:ŵ, (3)

with ŵ ¼ û;t � û
L
;t ¼ ð1� n� nÞðû;t � û

L
;t Þ under the condition û � nþ û

L
� nL ¼ 0 (� is the tensor product: n� n

is the second-order tensor nmnn).
The second term of T̂ is due to the planar nature of the friction force.
The perturbed displacement û is thus governed byZ

D

r:û;tt � u� dOþ
Z

D

eðûÞ : E : eðu�Þ dO ¼
Z
qOC

N̂:u�n þ T̂ � u�t dO (4)

or by Z
D

r:û;tt � u� dO�
Z
qOe

C

f :Ne

vj j
½ð1� t� tÞ:ŵ� � u� dOþ

Z
D

eðûÞ : E : eðu�Þ dO

¼

Z
qOe

C

N̂ :u�n þ f :N̂:t � u�t dO.

For the sake of clarity, the term

�

Z
qOe

C

f :Ne

vj j
½ð1� t� tÞ:ŵ� � u� dO

is first neglected.
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Under this assumption (A), the discretized dynamic equations are the following. If U is the column vector
associated with the discretization of û and N is associated with N̂, then the discretization of Eq. (4) under
assumption (A) gives

M: €Uþ K:U ¼ P ¼
0

RC

" #
; ML: €U

L
þ KL:UL ¼ �P;

ðUCÞI :nI þ ðU
L
CÞI :n

L
I ¼ 0 8I :

(5)

For the system of D and L bodies, Eq. (5) can be written as

M 0

0 ML

" #
: €U

TOT
þ

K 0

0 KL

" #
:UTOT ¼

P

�P

" #
,

ðUCÞI :nI þ ðU
L
CÞI :n

L
I ¼ 0; 8I ) AT:UTOT ¼ 0, ð6Þ

with UTOT ¼ ½U;UL�T.
From Eq. (6), for the node I, and for D, it follows that:

ðMÞI
€Uþ ðKÞIU ¼ NI ðnI þ f :tI Þ, (7)

we can then calculate NI ¼ nTI ðMÞI
€Uþ nTI ðKÞIU, ðMÞI and ðKÞI are (3�Ndof) matrices (Ndof is the number of

degrees of freedom of D). Then, we have

f :NI :tI ¼ f :½ðtI � nI ÞðMÞI �
€Uþ f :½ðtI � nI ÞðKÞI �U.

Eq. (7) then gives ½ðMÞI � f ðMfÞI �
€Uþ ½ðKÞI � f ðKfÞI �U ¼ NInI .

It is then possible to build ~M and ~K as follows:

~M: €Uþ ~K:U ¼
0

~RC

" #
; ð ~RCÞI ¼ NInI ,

where ~M and ~K are non-symmetric matrices.

~K ¼ K� f :Kf and ~M ¼M� f :Mf .

Doing the same thing for L, it is possible to write Eq. (6) as follows:

~M 0

0 ~M
L

" #
: €U

TOT
þ

~K 0

0 ~K
L

" #
:UTOT ¼

½ 0 ~RC �
T

½ 0 ~R
L

C �
T
¼ �A:N,

AT:UTOT ¼ 0,

so that the global dynamic system is obtained:

MTOTðf Þ 0

0 0

" #
€U
TOT

€N

" #
þ

KTOTðf Þ A

AT 0

" #
:
UTOT

N

" #
¼

0

0

� �
.

Now, consider what happens without the assumption A:
(RC)I can be written as follows:

ðRCÞI ¼ NI ðnI þ f :tI Þ þ
f :NeI

jvI j
½ð1� tI � tI Þð1� nI � nI Þðð _UCÞI � ðU

L
CÞI Þ�.
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Taking into account ðRL
CÞI , the additional term leads to the following element damping matrix:

Celem
I ðf Þ �

ð _UCÞI

ð _U
L

CÞI

2
4

3
5

¼ �
f :NeI

jvI j

ð1þ tI � tI Þð1� nI � nI Þ �ð1� tI � tI Þð1� nI � nI Þ

�ð1� tI � tI Þð1� nI � nI Þ ð1� tI � tI Þð1� nI � nI Þ

" #
�

ð _UCÞI

ð _U
L

CÞI

2
4

3
5.

Then, the global dynamic problem can be written as

MTOTðf Þ 0

0 0

" #
€U
TOT

€N

" #
þ

CTOT
ðf Þ 0

0 0

" #
_U
TOT

_N

" #
þ

KTOTðf Þ A

AT 0

" #
:
UTOT

N

" #
¼

0

0

� �
. (8)

The aim of this method is to find the modal form of Eq. (8). However, since the dimension of the matrices
considered is very large, it is necessary to restrict the displacement in an appropriate basis composed of the
first free vibration modes of the associated system with contact but without friction. In this basis, the mass and
stiffness and damping matrices are the projected matrices of small dimension.

The basis F composed of the free vibration modes is defined as follows:

l2
MTOTð0Þ 0

0 0

" #
þ

KTOTð0Þ A

AT 0

" # !
:U ¼ 0.

If U ¼ ½UU

UN
�, ½U

TOT

N
� ¼ U:Z and Z ¼ W:el:t, the small dimension problem is

l2:UT MTOTðf Þ 0

0 0

" #
Uþ l:UT CTOT

ðf Þ 0

0 0

" #
UþUT KTOTðf Þ A

AT 0

" #
U

 !
:W ¼

0

0

� �
.
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Fig. 10. Eigenvalues in the complex plane without taking account of damping matrix, x ¼ ReðlÞ=jlj is plotted as a function of the

frequency.
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The following generalized eigenvalue problem is then obtained:

fl2:M̂þ l:Ĉþ K̂g:W ¼ 0.

The lack of symmetry of these matrices leads to complex modes and to complex eigenvalues. A mode is
unstable if ReðlÞ40. For an unstable mode, there is flutter instability with a growing displacement in the
form:

UTOTðtÞ

NðtÞ

" #
¼ eReðlÞtU:½ReðWÞ cosðImðlÞtÞ � ImðWÞ sinðImðlÞtÞ�.

Figs. 10 and 11 present the results of the eigenvalue analysis. x ¼ ReðlÞ=jlj is plotted as a function of the
frequency (ImðlÞ=2p). In the figures, the straight lines are disc modes whereas the points are lining modes.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
-0.02

-0.015

-0.01
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0.015
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Frequency (kHz)

ξ

Fig. 11. Eigenvalues in the complex plane with the effect of the damping matrix, x ¼ ReðlÞ=jlj is plotted as a function of the frequency.

Fig. 12. Unstable modes in braking system.
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It is possible to compare x with the modal damping ratio of the material. From Figs. 10 and 11, the
maximum of x can be seen to be about 1%. A modal damping ratio of 1% would then be sufficient to stabilize
the modes.

In Fig. 10, the results are presented without taking into account the damping matrix due to the planar effect
of friction. Fig. 11 shows that the damping matrix introduced stabilizes all the modes although it is clear that
the unstable modes between 10 and 20 kHz are not so much modified.

Fig. 12 shows the main unstable modes of the brake system as identified in Fig. 10. According to the
experimental results, it is clear that there is a good agreement between the modes (a1–a4) and reality. From
Fig. 12a, modes can be recognized with 10, 11, 12 and 13 nodal diameters, as listed in Table 1. However, the
frequencies of the modes (b1–b3) seem to be absent from the noise spectrum. These modes are nodal diameters
modes with one nodal circle.

9. Conclusion and future work

This paper presents some interesting directions of research to understand the mechanism of brake squeal.
The numerical analysis gives the flutter modes. For some modes, there is a good agreement between the
numerical analysis and the experiments. However, the phenomenon is not yet completely explained.

This is the first step of the analysis. Future work to be considered consists of computing the cyclic response
resulting from this dynamic bifurcation in the sense of Hopf [8].
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	TGV disc brake squeal
	Background
	Introduction
	The brake system
	Experimental data
	Mechanical model
	The governing equations
	The steady sliding response
	The flutter instability of the steady sliding equilibrium
	Conclusion and future work
	References


